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a  b  s  t  r  a  c  t

Traditional  ensemble  regression  algorithms  such  as  BAgging  Partial  Least  Squares  (BAPLS)  and  BOosting
Partial  Least  Squares  (BOPLS)  do not  perform  very  well  in  the  data  set  that  is relatively  small  or  con-
taminated  by  random  noise.  To make  the method  robust  and  improve  its  prediction  ability,  inspired
from  bias–variance–covariance  decomposition,  we  propose  an  improved  ensemble  partial  least  squares
method  based  on  the  diversity.  The  new  method  is applied  to  quantitative  analysis  of Near  InfraRed  (NIR)
eywords:
artial least squares
agging
oosting
reating  diversity
uantitative analysis

data  sets.  A  comparative  study  between  the  proposed  method  and other  previous  methods  including
BAPLS  and  BOPLS  on  two  NIR data  sets  is  provided.  Experimental  results  show  that  the  proposed  method
can  achieve  better  performance  than  other  methods.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Partial least squares (PLS) is one of the most widely used multi-
ariate calibration methods. It can handle the situations where the
umber of variables considerably exceeds the number of observa-
ions and there is collinearity within the data such as near-infrared
NIR) spectroscopic data [1]. However, when the calibration set
s relatively small or contaminated by random noise, over-fitting

ay occur and cause the PLS model unstable [2]. Therefore, a great
fforts have been made to improve the performance of PLS. These
orks include spectral pretreatment techniques, variable selec-

ion methods and different robust strategies, such as multiplicative
cattering correction (MSC) [3], orthogonal signal correction (OSC)
4], wavelet transform (WT) [5], partial robust M-regression (PRM)
6] and multiblock partial least squares (MB-PLS) [7], etc. In addi-
ion, an alternative approach to improve the performance of PLS is
nsemble learning strategy, such as Bagging and Boosting.

Bagging is proposed by Breiman [8]. In BAgging Partial Least
quares (BAPLS), each individual PLS model is trained indepen-
ently, using randomly chosen training samples via a bootstrap
echnique. The trained individual PLS models are aggregated to

ake a collective decision by taking the average of the ensemble

LS models, but BAPLS is not very effective when the calibration
amples are insufficient. In Boosting strategy, multiple models are
eveloped by using the calibration subsets selected from the whole

∗ Corresponding author. Tel.: +86 10 62520293.
E-mail address: huyong821204@163.com (Y. Hu).

039-9140/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.talanta.2012.03.047
calibration set according to the distribution of the sample weights
obtained under certain hypothesis [9]. Recently, the Boosting pro-
cedure is introduced into PLS: Zhang et al. [10] propose a BOosting
Partial Least Squares (BOPLS) by combining a series of PLS models.
To improve the robustness and prediction ability of the Boosting
algorithm, a robust step is added to weaken the effect of the outliers
on the model [11], several algorithms such as GentleAdaboost and
BrownBoost have been developed [12]. Yu and co-workers [13] add
a robust step to boost PLS for QSAR study of angiotensin II antago-
nists. Lutz et al. [14] propose a robust least squares (L2) Boosting for
linear regression. The ensemble strategy has been proved to be an
efficient way to improve the stability of the prediction [15]. How-
ever, Boosting does not perform very well when given insufficient
data [16], which will stop the Boosting method from learning an
effective ensemble model [17].

Inspired from bias–variance–covariance decomposition, we
propose a new ensemble PLS method called creating diversity par-
tial least squares (CDPLS) to improve the robustness of the PLS
model. In this method, an ensemble model is generated iteratively,
and is trained on the original calibration samples combined with
some virtual samples generated in each successive iteration. In fact,
BAPLS and BOPLS generate diverse models by sub-sampling and
re-weighting the existed calibration samples respectively, if the
calibration samples are not enough, which will limit the amount of
ensemble diversity with BAPLS and BOPLS. The proposed method

CDPLS directly constructs diverse models with virtual samples
which are produced by original calibration samples, and this can
increase the amount of ensemble diversity when the calibration
samples are not enough.
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. Theory and algorithm

.1.  Bias–variance–covariance decomposition

Let z = {(x1, y1), . . .,  (xN, yN)} be the data set, where xi is the
nput sample and yi is the output concentration, N is the number of
he input samples, with each element drawn from a random vari-
ble z defined over an unknown distribution p(x, y). We  will use a
arameterized estimator f(x ; w) with parameter w to approximate
he correct mapping from input to output, so f(x ; w) can be seen
s a random variable related with parameter w. For the purpose,
e would like to find the set of parameter w that minimize the

ollowing formulation:

(f  ) =
∫

(f (x; w) − y)2dp(x, y) (1)

here  e(f) is the expected mean squared error for the random
ariable f(x ; w). Unfortunately we do not have access to the true dis-
ribution p(x, y), so we approximate this integral with a summation
ver the data set z:

(f  ) ≈ 1
N

N∑
n=1

(f (xn; w) − yn)2, (xn, yn) ∈ z (2)

n  place of the integral notation in Eq. (1), we use E{(f(x ; w) − y)2}
o stand for the expectation of the random variable (f(x ; w) − y)2

elated with parameter w, additionally we will omit the input and
arameter vectors, so where it is unambiguous, we  use f instead
f f(x ; w). The bias–variance decomposition from Eq. (1) as follows
18]:

e(f  ) = E{(f − y)2} = (E{f } − y)2 + E{(f − E{f })2}
=  bias(f )2 + variance(f )

(3)

or  the ensemble state: we  have a collection of estimator: f1, . . .,  fM,
ach fi has its own parameter vector wi, and M is the total number
f estimators. The general ensemble model (GEM) is to take a non-
niformly weighted average:

 (x; w1, . . . , wM) =
M∑

i=1

˛ifi(x; wi),
M∑

i=1

˛i = 1 (4)

e  use f (x; w1, . . . , wM) instead of f(x ; w), omit the input x and
arameter vectors wi(i = 1, . . .,  M), we will have a bias–variance
ecomposition like Eq. (3)

e(f ) = E{(f − y)2} = (E{f } − y)2 + E{(f − E{f })2}
=  bias(f )2 + variance(f )

(5)

or  convenience, we restrict the analysis to the uniform case
˛i = 1/M) and define three concepts as follows:

ias = 1
M

∑
i

(E{fi} − y) (6)

ariance = 1
M

∑
i

E{(fi − E{fi})2} (7)

ovariance = 1
M(M − 1)

∑
i

∑
j /=  i

E{(fi − E{fi})(fj − E{fj})} (8)

here  E{f } is the expected value of ith model f (x ; w), we  then have
i i
he bias–variance–covariance decomposition [18] as follows:

{(f −  y)2} = bias
2 + 1

M
variance +

(
1 − 1

M

)
covariance (9)
 (2012) 301– 307

2.2. Construction of virtual samples

We declare that the sample is a feature vector only represented
as a spectrum in the next discussion. We  generate virtual samples
based on Synthetic Minority Over-sampling TEchnique (SMOTE)
method [19]. Details of this method are as follows: the original
samples are over-sampled by introducing synthetic samples along
the line segments joining any k nearest neighbors of each sample.
Depending upon the required amount of over-sampling, neighbors
from the k nearest neighbors are randomly chosen, and our imple-
mentation currently uses five nearest neighbors. For instance, if the
needed amount of over-sampling is 200%, then only two neighbors
from the five nearest neighbors are chosen and only one sample is
generated in the direction of each. In this paper, we  use 100% for
the amount of over-sampling. Synthetic samples are generated in
the following way: each sample can be seen as a feature vector, we
take the difference between the sample (feature vector) under con-
sideration and its nearest k neighbors, multiply this difference by a
random number between 0 and 1, and add it to the feature vector.
An example is given below: consider a sample (6, 4) and let (4, 3)
be one of its k-nearest neighbors, we get the difference (− 2, − 1),
the virtual samples will be generated like this: xvir = (6, 4) +  ̨ · (− 2,
− 1), where  ̨ is a random number between 0 and 1.

2.3.  The new ensemble partial least squares algorithm based on
creating  diversity

We  need to provide metrics to measure the quality and relia-
bility of a prediction. In the calculations, the root mean squared
error of calibration (RMSEC) and the root mean squared error of
prediction (RMSEP) are used as an evaluation criterion as follows:

RMSEC  =

√√√√ 1
N1

N1∑
i=1

(ycal,i − ŷcal,i)
2 (10)

RMSEP =

√√√√ 1
N2

N2∑
i=1

(ypred,i − ŷpred,i)
2 (11)

in which ycal,i and ŷcal,i are the measured and PLS fitted values for
the ith calibration sample, respectively; ypred,i and ŷpred,i are the
measured and PLS predicted values for the ith prediction sample
respectively; N1 and N2 are the number of the calibration samples
and the prediction samples, respectively.

From Eq. (9), we  can see that the generalization error of an
ensemble model not only depends on the bias and variance of the
individual estimators, but also depends on the covariance between
the individuals, so we should train ensemble members separately,
and find some way to capture the diversity of each model so as
to reduce the covariance. We  propose a new method based on
creating diversity to solve this problem. The proposed method
ensures diversity on an arbitrarily large set with additional vir-
tual samples. Virtual samples and the interchange concentration,
which can deliver the data set more disturbance, more comprehen-
sive coverage of the potential changes that may be encountered
in the data. We  interchange concentrations so that two  adja-
cent individual models are inconsistent as much as possible, the
inconsistency makes the ensemble model more effective, which
will improve the generalization ability of the model based on
bias–variance–covariance decomposition. The basic idea is as fol-
lows:
Given a data set z = {(x1, y1), . . .,  (xN, yN)}, where xi is the cal-
ibration sample and yi is the concentration corresponding to xi.
We initialize the ensemble PLS model which is trained on the
given calibration set and denote it as fin. Meanwhile we compute
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Fig. 1. The framework of the proposed m

he initialized root mean squared error of calibration (RMSECin)
ith model fin based on the given calibration set. In the first

teration, we generate N virtual samples X = {x1, . . . , xN)} based
n SMOTE method from the calibration set, and then we  obtain
he “virtual concentration” Y = {y1, . . . , yN} with model fin based
n the virtual samples X . We  denote the new data set as z =
(x1, y1), . . . , (xN, yN)}. For any two adjacent elements in Y , we
nterchange them to create diversity. We  denote the new set as

 = {̃y1, . . . , ỹN} (two adjacent points in Y are permuted), hence

e get the diversity data set z̃ = {(x1, ỹ1), . . . , (xN, ỹN)}. We  call this
ew data set z̃ as “virtual calibration set”. We  then obtain a new PLS
odel fnew trained on the union of z and z̃. In order to compare the

erformance between fin and fnew, we only compute the root mean
 creating diversity partial least squares.

squared  error of calibration (RMSECnew) with fnew corresponding to
the original data set z. In fact, there are some differences between
the individual PLS model fin and fnew: at least, they have different
concentration results on the virtual samples (Ỹ is a permutation
of Y , they are different). Meanwhile we compute the normalized
weight vector W(ω1, ω2) for each model:

ωi = ω̂i

ω̂1 + ω̂2
, i = 1, 2
where  ω̂1 = 1
RMSECin

, ω̂2 = 1
RMSECnew

. The new ensemble model is
as  follows:

f = ω1fin + ω2fnew (12)
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Fig. 2. Spectra of date set 1: fescue grass powdered samples.
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nd then we compute the root mean squared error of calibration
RMSEC) with f based on z (the original calibration data set again).
n order to maintain the training accuracy to some extent, we accept
he new model fnew according to the following inequality equation:

RMSECin − RMSEC| ≤  ̌ × RMSECin (13)

here  ̌ is a tradeoff between the training accuracy and the cre-
ting diversity: if  ̌ is too small, it requires that RMSEC is close to
MSECin, we tend to pursue accuracy, while rejecting many diverse
odels in this situation; If  ̌ is too large, it means we  can obtain
any diverse models, while we cannot guarantee the accuracy of

hese models, maybe this will further affect the accuracy of the final
nsemble model. In short, we need to create diverse models, at the
ame time we should guarantee the accuracy of the training mod-
ls to some extent: if Eq. (13) holds, we accept fnew and replace fin
ith f , in this case, if RMSEC is smaller than RMSECin, we  replace
MSECin with RMSEC. If Eq. (13) does not hold, we will reject fnew

nd then find the next model with new “virtual calibration set”
ased on SMOTE method. All these processes are repeated until we
each the desired ensemble size M. The framework of the proposed
ethod begins with calibration set z, and it is shown in Fig. 1.
Specific steps of the proposed method creating diversity partial

east squares are described in Algorithm 1.

lgorithm 1. Creating diversity partial least squares algorithm
Given N calibration samples z = {(x1, y1), . . . , (xN , yN )}, basic learning algorithm
PLS,  desired ensemble size M, threshold  ̌ to tune the tradeoff between the
calibration accuracy and the creating diversity. The final ensemble model is f .
1: i = 1.
2:  fin = fi = PLS(z), compute RMSECin on z with fin.
3: Initialize ensemble f = fin.
4:  While i ≤ M.
5:  Generate N virtual samples X based on the SMOTE method according to

original  samples X , get the“virtual response” Y based on the ensemble

model  f , and replace Y with Ỹ to obtain the “virtual calibration set” z̃.
6:  z = z

⋃
z̃, fnew = fi+1 = PLS(z), obtain RMSECnew on z with fnew,

updated ensemble model f according to Eq. (12).
7: z = z − z̃, compute the RMSEC on z with f .
8: If |RMSECin − RMSEC| ≤  ̌ × RMSECin, RMSEC ≤ RMSECin, we  accept

fnew, replace fin with f and replace RMSECin with RMSEC;
If |RMSECin − RMSEC| ≤  ̌ × RMSECin

and RMSEC > RMSECin, we accept fnew

and replace fin with f , not replace
RMSECin with RMSEC;
If |RMSECin − RMSEC| >  ̌ × RMSECin,
reject fnew;
set i = i + 1, go back to step 4.

. Experimental

.1. Data sets

For  the purpose of testing and comparing different cal-
bration methods, two NIR data sets are used which are
resented respectively by the Software Shootout at the IDRC
1998) (International Diffuse Reflectance Conference in Cham-
ersburg) (http://www.models.life.ku.dk)  and the IDRC (2002)
http://www.eigenvector.com/data/tablets/index.html). Data set 1
ontains NIR spectra of 141 fescue grass powdered samples (Fig. 2)
ith specified carbon contents ranging from 29% to 41%, including

050 variables from 400 to 2498 nm.  These samples are arbitrar-
ly divided into three sets: 71 samples are used for calibration set,
5 samples are used for validation set and the remaining 35 sam-
les are used for prediction set. Data set 2 contains NIR spectra of

54 pharmaceutical tablet samples from the first instrument with
pecified hardness ranging from 13.8 to 23.5, including 650 vari-
bles from 600 to 1898 nm.  These samples have been divided into
hree parts in the original record: calibration set consists of 154
Wavelength /nm

Fig. 3. Spectra of date set 2 (calibration set): 50 pharmaceutical tablet samples.

samples (Fig. 3 for 50 of 154), validation set consists of 40 samples
and prediction set consists of 460 samples.

3.2. Calculations

We  use the validation set to optimize the parameters in the
proposed method in the following section. The number of latent
variables for constructing each PLS model is determined by leave-
one-out cross validation (LOOCV) [20]. We  compare the proposed
method creating diversity partial least squares with the standard
partial least squares method and some other ensemble methods
including BAPLS and BOPLS based on RMSEP from Eq. (11).

4.  Results and discussions

4.1.  Number of calibration samples

The number of the calibration samples in CDPLS will affect the
prediction result. Thus, a proper number of calibration samples
must be investigated prior to development of the diversity model.

In this study, the number of the calibration samples N for the two
data sets is investigated by increasing from 10 to the maximum
samples with a step of 5. For each N, the ensemble model is devel-
oped and the model is then used to predict the validation set. As
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from 0.001 to 0.1 with a step of 0.001 for the two  data sets. For each
ˇ, the ensemble model is developed and the model is then used to
predict the validation set. As shown in Fig. 7, for the two  data sets,
RMSEP is large when a small  ̌ is used, then RMSEP decreases with
alibration subset for data set 1 (above) and data set 2 (below).

hown in Fig. 4, for the data set 1, RMSEP is large when a small N
s used, and then decreases with the increase of N. When N reaches
0, the variation of RMSEP tends to be stable although there is a
ew fluctuations. For data set 2, although there is a few fluctuations
n the beginning, the variation of RMSEP tends to be stable at last.

In  fact, from Fig. 4, we can see that more samples are not nec-
ssary to some extent when using our method CDPLS. In order
o evaluate the proposed algorithm CDPLS on more small calibra-
ion samples case, we provide a detail analysis and construct two
xperiments on data set 1, where 35 and 50 samples are chosen
s calibration samples, respectively. The algorithm is repeated 20
imes and the prediction results are compared for different num-
er of calibration samples. All these are shown in Fig. 5: although
he number of calibration samples increases (from 35 to 50), the
MESP does not significantly reduce, and the prediction results on
he small data set (35 calibration samples) are comparable with
hat on the large data set (50 calibration samples). From the per-
ious analysis, we assign N to 50 and 100 for the two  data sets,

espectively.
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ig. 5. RMSEP obtained by different number of calibration samples in 20 runs of
rediction for data set 1.
Fig. 6. Variation of RMSEP with the number of ensemble models M used in the
calibration  subset for data set 1 (above) and data set 2 (below).

4.2. Number of ensemble models

The ensemble size M is another important parameter to affect
CDPLS. In this study, for the two  data sets, M is investigated by
increasing from 1 to 100 with a step of 1. For each M, the ensemble
model is developed and the model is then used to predict the vali-
dation set. As shown in Fig. 6, for the two  data sets, RMSEP is large
when a small M is used, and then decreases with the increase of M.
The variation of RMSEP tends to be stable at last. Considering the
speed of calculation, we assign M to 40 and 20 for the two data sets
respectively.

4.3. The effect of parameter  ̌ for the ensemble models

Parameter  ̌ is a tradeoff between the calibration accuracy and
the creating diversity. In this study,  ̌ is investigated by increasing
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Fig. 7. Variation of RMSEP with parameter  ̌ used in the calibration subset for data
set 1 (above) and data set 2 (below).



306 Y. Hu et al. / Talanta 94 (2012) 301– 307

1000 1050 1100 1150 1200 1250 1300 1350 1400
−0.02 

−0.01

0

0.01

0.02

0.03

0.04

Wavelength /nm

A
bs

or
ba

nc
e

 

Original calibration sample
Noise added calibration sample

F
1

t
l

4

C
s
s

r
t
t

r
s
i
i

4

t

F
i

0 5 10 15 20
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Run times

R
M

S
E

P

Data set 1

 

 
PLS
BAPLS
BOPLS
CDPLS

sity. Especially for the data set 2 which contains 154 calibration
samples and 460 prediction samples, the fluctuations of the RMSEP
with BOPLS method are significant (Fig. 11), and the result of this
ig. 8. Spectra for the first calibration sample of data set 1 between 1000 nm and
400 nm:  original sample (black) and noise added sample (gray).

he increase of ˇ, and the variation of RMSEP tends to be stable at
ast, we assign  ̌ to 0.02 for both data sets in the next discussion.

.4.  The effect of noise for the ensemble models

To evaluate the impact of noise on the proposed algorithm
DPLS, we add a gaussian noise to the calibration samples of data
et 1 (spectra for the first sample between 1000 nm and 1400 nm
how in Fig. 8).

With  above optimal parameters on data set 1, the algorithm is
epeated 20 times and the prediction results are compared on the
wo calibration sets: original samples and noise added samples. All
hese are shown in Fig. 9.

Compared to the original calibration samples, RMESP cor-
esponding to the contaminated calibration samples does not
ignificantly increase, and sometimes is better than that on the orig-
nal calibration set. This experiment shows that our method CDPLS
s not sensitive to random noise to some extent.

.5. Prediction results
With  the optimal parameters, a CDPLS model is developed with
he calibration samples and used for the prediction samples. The
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ig. 9. RMSEP obtained by original calibration set and noise added calibration set
n 20 runs of prediction for data set 1.
Fig. 10. RMSEP obtained by PLS, BAPLS, BOPLS, CDPLS in 20 runs of prediction for
data set 1.

algorithm is repeated 20 times and the prediction results are com-
pared with PLS, BAPLS and BOPLS models (with the same calibration
data set, the same prediction data set and the same parameters).
All these are shown in Figs. 10 and 11, respectively for the two data
sets. It is clear that RMSEP is all the same with the standard PLS
because it is developed with a single model, while the other three
ensemble models show some fluctuations, and the RMSEP of the
proposed CDPLS method is almost always smaller than that of PLS
in the 20 runs. Meanwhile, the fluctuations of CDPLS is smaller than
those of the BAPLS and BOPLS. BAPLS and BOPLS provide diverse
models by sub-sampling and re-weighting the existed calibration
samples respectively, although these will generate some diverse
individual models, they cannot guarantee the accuracy of each indi-
vidual model. While for our CDPLS method, we introduce a tradeoff
parameter  ̌ to tune the training accuracy and the creating diver-
method is worse than that of the other three methods (PLS, BAPLS,
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Fig. 11. RMSEP obtained by PLS, BAPLS, BOPLS, CDPLS in 20 runs of prediction for
data set 2.
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nd CDPLS), which may  be because the number of calibration sam-
les is less than that of the prediction samples, and the models are
nly constructed based on the calibration samples, this may  eas-
ly lead to over-fitting with BOPLS, but our CDPLS method solves
his problem to some extent (Fig. 11): we construct models based
n the original calibration samples and the “virtual calibration sam-
les”, which expands the scope of the original samples. Meanwhile,
ecause we interchange elements of “virtual concentration”, this
ill ensure that each constructed model has some differences with

thers. Based on the principle of bias–variance–covariance decom-
osition, the final model which is the weighted average of the single
odels has better generalization ability. In short, all of the above

xperiments for the two data sets indicate that both the stability
nd the accuracy of CDPLS method are much better than that of PLS
nd BAPLS including BOPLS method.

. Conclusions

Based on bias–variance–covariance decomposition, we pro-
osed a new algorithm CDPLS for building a robust ensemble model

n multivariate calibration of NIR spectra. Experimental results on
wo NIR data sets demonstrate the efficiency of the proposed algo-
ithm.
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